CHEMICAL AND SPECTROMETRIC CHARACTERIZATION OF AGROINDUSTRIAL RESIDUES FOR ITS POTENTIAL USE AS ORGANIC AMENDMENT

Authors

Keywords:

Biotransformation, Organic matter, UV-Visible

Abstract

Knowing the organic residues properties allows to infer its potential use as organic amendments (AO), to improve soil health. The objective of the study was to assess organic residues of diverse origin and under different transformations through the chemical and spectrometric characterization. In addition, verify if these residues can affect in a similar way based on their specific properties to facilitate their application. Seventeen organic residues of different origin and under different transformation processes were selected. In each of them, organic matter (OM), organic carbon (OC), total nitrogen (Nt), pH, electrical conductivity (EC) were determined, and then, they were analyzed by a UV-vis technique from their humic substances extraction. All organic residues presented a wide variation in the parameters evaluated. However, considering each parameter individually, most of residues meets the requirements for its use, with the exception of bagasse and alperujo, which they have high EC values. The multivariate grouping of contrasting organic residues considering chemical and spectrometric properties defined four groups: nontransformed, semitransformed, biotransformed, and mature. Analyzed jointly, it was evidenced that OC, OM, C:N ratio, Nt, absorbance coefficients 254 to 665 (E2/E6) and 254 to 465 (E2/E4) ratios were the most relevant variables to each group. Comparing groups of organic residues, the most valuable difference was detected in OC, being nontransformed (687 g kg-1)> semitransformed (534 g kg-1)> biotransformed (439 g kg-1)> mature (181 g kg-1) groups. Combining chemical and spectrometric properties contributes to a better understanding of the level of structural complexity of these materials, providing relevant information when defining their suitability for use as OA.

References

Abbasi, M.K. y Khizar, A. (2012). Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic–inorganic N sources and their effect on growth and N-uptake in maize. Ecological Engineering, 39, 123-132.

Abril, A., Salas, P., Lovera, E., Kopp, S. y Casado-Murillo, N. (2005). Efecto acumulativo de la siembra directa sobre algunas características del suelo en la región semiárida central de Argentina. Ciencia del suelo, 23(2), 179-188.

Albrecht, R., Petit, J. L., Terrom, G. y Périssol, C. (2011). Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresource Technology, 102, 4495-4500.

Alexander, R.A. (1994). Standards and guidelines for compost use. Biocycle, 35(12), 37-41.

Ansorena, J., Batalla, E. y Merino, D. (2015). Evaluación de la calidad y usos del compost como componente de sustratos, enmiendas y abonos orgánicos. Laboratorio Agroambiental Fraisoro. Fraisoro Etxaldea. 20159 Zizurkil Gipuzkoa.

Balzarini, M. G., González, L., Tablada, M., Casanoves, F., Di Rienzo, J. A. y Robledo, C. W. (2008). Infostat: Manual del Usuario. Córdoba. Editorial Brujas.

Barbaro, L. A., Karlanian, M. A., Imhoff, S. y Morisigue, D. E. (2011). Caracterización de la turba subtropical del departamento Islas de Ibicuy (Entre Ríos, Argentina). Agriscientia, 28(2), 137-145.

Barbazán, M., Del Pino, A., Moltini, C., Hernández, J. y Rodríguez, J. (2011). Caracterización de materiales orgánicos aplicados en sistemas agrícolas intensivos de Uruguay. Agrociencia Uruguay, 15(1), 82-92

Bernal, M. P., Navarro, A. F., Sanchez-Monedero, M. A., Roig, A. y Cegarra, J. (1998). Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology and Biochemistry, 30(3), 305-313.

Bremner, J. M. (1996). Nitrogen – Total. En: Sparks, D.L. Methods of Soil Analysis, part 3. Ed. Chemical Methods, 1085-1123.

Burgess, C. y Thomas, O. (2007). UV-visible Spectrophotometry of Water and Wastewater, 1st ed. Elsevier Science, Boston.

Chen, Y., Gu, B., Leboeuf, E. J., Pan, H. y Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48, 59-68.

Chen, Y., Senesi, N. & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios. Soil Science Society of America, 41, 2352-358.

Clark, G. J., Dodgshun, N., Sale, P. W. G. & Tang, C. (2007). Changes in chemical and biological properties of a sodic clay subsoil with addi-tion of organic amendments. Soil Biology and Biochemistry, 39,112806-2817.

De Bertoldi, M., Ferranti, M. P., L’hermite, P. & Zucconi, F. (1987). Compost: production, quality and use. Elsevier Applied Science.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2018). InfoStat versión (2018). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina.Duval, M. E., Martinez, J. M. y Galantini, J. A. (2020). Assessing soil quality indices based on soil organic carbon fractions in different longterm wheat systems under semiarid conditions. Soil Use and Management, 36(1), 71-82.

Hernandez, T., Chocano, C., Coll, M. D. y Garcia, C. (2018). Composts as alternative to inorganic fertilization for cereal crops. Environmental Science and Pollution Research, 26, 35340-35352.

He, Z., Mao, J., Honeycutt, C. W., Ohno, T., Hunt, J. F. y Cade Menun, B. J. (2009). Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biology and Fertility of Soils, 45, 609-616.

Heal, O. W., Anderson, J. M. & Swift, M. J. (1997). Plant Litter Quality and Decomposition: An Historical Overview. In: Cadish, G. y Killer, K.E. (Eds.). Driven by Nature: Plant Litter Quality and Decomposition.

Heymann, K., Mashayekhi, H. y Xing, B. (2005). Spectroscopy analysisof sequentially extracted humic acid from compost. Spectrosco¬py Letters, 38, 293-302.

Hogg, D., Favoino, E., Centemero, M., Caimi, V., Amlinger, F., Devliegher, W., Brinton, W. y Antler, S. (2002). Comparison of compost standards within the EU, North America and Australia. The Waste and Resources Action Programme (WRAP), Oxon, ISBN 1-84405-004-1.

Iocoli, G. A., Pieroni, O. I., Gómez, M. A., Alvarez, M. B. y Galantini, J. A. (2017). Rapid characterisation of agro-industrial effluents for envi-ronmental fate by UV–visible and infrared spectroscopy from fractions obtained by centrifugation. International Journal of Environmen¬tal Analytical Chemistry, 97(8), 756-767.

Lasaridi, K. E. (1998). Compost Stability: A Comparative Evaluation of Respirometric Techniques. [PhD Thesis] Department of Civil Engi-neering, University of Leeds, Leeds, UK.

Martínez, C. (1996). Potencial de la lombricultura: elementos básicos para su desarrollo. Carballo, A. y Bravo, S. (eds). Texcoco, MX. 140 p.

Martínez, J. M., Galantini, J. A., Duval, M. E., López, F. M. y Iglesias, J. O. (2017) Ajustes en la estimación de carbono orgánico por el método de calcinación en Molisoles del sudoeste bonaerense. Ciencia del Suelo, 35, 181-187.

Moisés, J., Martinez, J. M., Iocoli, G. A., Duval, M. E. y Galantini, J. A. (2022). Utilización de cascaras de girasol con diferentes transforma-ciones como potenciales enmiendas orgánicas en trigo pan. Ciencia del Suelo, en prensa.

Postemsky, P. D., Lucaioli, V. S., Devalis R. , González Matute R., Figlas N. D., Kiehr. M., Cubitto M. A., Marinangeli, P. A. y Curvetto N. R. (2017). Pretratamientos de la cáscara de semilla de girasol para su utilización como sustrato de plantas. IV Congreso Internacional Cien-tífico y Tecnológico-CONCYT. Quilmes, Buenos Aires, Argentina.

Reyes Sanchez, L. B., Horn, R. y Costantini, E.A.C. (Ed.), (2022). Sustainable soil management as a key to preserve soil biodiversity and stop its degradation. International Union of Soil Sciences [IUSS]

Satorre, E. H. y Slafer, G. A. (1999). Wheat: ecology and physiology of yield determination. CRC Press.

Shirshova, L. T., Ghabbour, E. A. y Davies, G. (2006). Spectroscopic characterization of humic acid fractions isolated from soil using differ-ent extraction procedures. Geoderma, 133, 204-216.

Unión Europea (Decisión 2001/688/EC) Diario Oficial de las Comunidades Europeas L 242/17.

Ukalska Jaruga, A., Bejger, R., Debaene, G. y Smreczak, B. (2021). Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils. Agronomy, 11, 1067.

Waldrip, M. H., He, Z., Todd, R. W., Hunt, J.F., Rhoades, M. B. y Cole, N. A. (2014). Characterization of Organic Matter in Beef Feedyard Ma¬nure by Ultraviolet-Visible and Fourier Transform Infrared Spectroscopies. Journal of Environmental Quality, 43, 690-700.

Published

29-12-2022

How to Cite

Moisés, J., Martinez, J. M., Duval, M. E., & Galantini, J. A. (2022). CHEMICAL AND SPECTROMETRIC CHARACTERIZATION OF AGROINDUSTRIAL RESIDUES FOR ITS POTENTIAL USE AS ORGANIC AMENDMENT. Ciencia Del Suelo, 40(2). Retrieved from https://www.ojs.suelos.org.ar/index.php/cds/article/view/751

Issue

Section

Contaminación del Suelo y Calidad del Medio Ambiente